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Project Goals

» Make parametric search more comprehensible with a bottom-up (examples)
approach rather than a top-down (formal) approach.

» Get intuition for how and when to use parametric search.
» Provide visualisations of parameterization.

» Do something with graphs.
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Parametric Search

Informal Explanation
Use decision problem algorithm to solve optimization problem.
» Decision problem: Check if a condition holds or not.
e.g. For input value X, is A < A", A = A" or A > \*7?

» Optimization problem: Find optimal solution for problem.
e.g. Minimize f(\) when X has a set of constraints.
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Components

Definitions and Notation
» Let fi(\) = a; + b\ with b; > 0.
> Let {fi()),...,f(N)} be a set of pairwise distinct functions.
> Let F()) be the median of set {fi(A),...,f(\)} forall A € R.

» Let \j denote the intersection two distinct functions f; and f; in the set
{fl()\), ce fn()\)}, such that a; + b,‘/\,’j =aj+ bj/\,'j with | # .



>

>

Components

Notes on F(\)

Monotone increasing segments, because b; > 0 in
each fi(\) = aj + bix of set {A(N),...,f(N)}.

O(n?) breakpoints, because the maximum of

: : . T .
intersections for n straight lines is “5" intersections

Evaluable in linear-time when all f;(\)’s have been
computed. 1 i

F(i)

15(2)
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Solving F(A\) =0

A Non-Parametric Algorithm Outline

1. let intersections < All \j € {ﬂ,..,,ﬂ};
2. sort(intersections);
3. let interval < binary_search(
function pivot_comparison(A;) {
return \; < 0;
}
);

4. linear_root(interval);

Algorithm Asymptote is Quadratic

» Find intersections: O(n?)
» Sorting: O(nlog(n))
» Binary Search: O(log (n))



Solving F(A\) =0
Employing Parametric Search

» ldea: use decision procedure on critical points Aj;, i.e. A\jj > 0,A;; =0or \; <0
to find the smallest open interval (Amin, Amax) where F(A\) = 0.

» \* denotes the unkown solution to F(A*) = 0.

A Parametric Algorithm Outline

1. let Amin ¢ —00 and Apax < 00;
2. let intersections < All )\j; € {fl, ceey f,,};
3. for )\; in intersections:
if (Aj € (Amin, Amax) AND F(Aj) < 0)) {
Amin )\,’j;
} else if()\[j S ()\m/ny)\max)) {
Amax )\,‘j;
}
4. linear_root ((Amin, Amax));



Solving F(A\) =0

A Parametric Algorithm Outline

1. let Apin & —00 and Apmax < 00}
2. let intersections < All \j; € {fh...,fn};
3. for /\;J- in intersections:

if (\j € (Aminy Amax) AND F(N;) < 0)) {

Amin = )\ij;
} else if (A\j € (Amin, Amax)) {
Amax - )\ij

}
4. linear_root ((Amin, Amax));
Algorithm Assymptote is Quadratic

» Finding intersections: O(n?)
» Only O(n) of O(n?) intersections require an O(n) evaluation of F: O(n?)



Solving F(A\) =0

From Parametric to Parallelism

> Anin and Apax are shared variables of the concurrent processes.
» Each intersection )\ can be evaluated by F independently, on a different thread.
> Yield slightly better theoretical bounds: O(nlog(n)?) and O(nlog(n)?log(log(n))).
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The problem

Informal Explanation

» Coined by Dantzig et al. in the context of a ship i

routing problem posed by the American Office of '&

Naval Research. \ i
» Concerns a ship owner that wants to maximize his i/

mean daily profit over time while making a round :]', ~. .

trip through multiple ports. i-\ ;];

» Can be transformed to a minimization problem by ]/
looking at the minimal cost. i

» The solution to MRC gives exactly the path that the
skipper should take to maximize his profit.



The MRC problem

More Formally

» A directed graph G = (V, E), with V a set of vertices and E a set of edges.
» No self-loops in G

» Each vertex i has an associated cost ¢;; and travel time t;; to reach a vertex j.

Representation

> Adjacency matrix A € {0,1}VIXIVl - Directed graph G
> A cost matrix C € RIVIXIVI — All travel costs ¢;
> A time matrix T e RIVIXIVI — All travel times tij



The MRC problem

Representation Example

» Interactive graph visualisations made using the
Cytoscape Library.

» Should be formulated as an optimization
problem (minimization).
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The General Problem
Megiddo's Theorem

Problem A. Minimize cix; + -+ cpxp subject to x = (x1,...,xn) € D
ag + a1x1 + -+ + anXn

Problem B. Minimize
M bo + bux o box

subject to x = (x1,...,x5) € D

With D a set of conditions or constraints to which x = (x1,...,xp)

must adhere in order to be a valid solution.

Theorem. If problem A is solvable within O(p(n)) comparisons and O(q(n)) additions,

then B is solvable in time O(p(n)(q(n) + p(n))>



The General Problem

|dea of the theorem (1)

» Given a problem of type B :
min(Z—g+‘Z—1X1+--'+Z—:X,,> with x = (x1,...,%,) € D

> Pick a fixed number t € R
» Solve problem A with parameters of problem B and t :

min(clxl + -+ epxn | Gi(t) = ai — tb,-) with x = (x1,...,x,) € D



The General Problem

Idea of the theorem (2)

» Suppose that v is the optimal value for problem A :
Vv = min ((al —th))x1+ -+ (an — tb,,)xn) with x = (x1,...,x,) € D.

» If v can be written as tby — ag then:
tbg — ag = min ((31 — tbl)Xl + 4 (an — tb,,)Xn> <
t = min (Z—g + (a1 — th1)xy + -+ (an — tb,,)x,,)

» How does this compare to problem B?

min(%g+%xl+---+%:xn> with x = (x1,...,%,) € D



The General Problem

|dea of the theorem (3)

> Notice that Vi € {1...n}:  is the root of ¢;(t) = a; — tb; such that ¢;(3) =

» Megiddo's ratio-minimization trick: replace functions in problem with their roots.

thg — ag = min (cl(t)xl 4ot c,,(t)x,,) —
t =2+ min ((al —thi)x1 + -+ (an — tb,,)x,,) =
t = min (Z—g+2—1x1+---+g—:x,,)
> We found a relation: t is the optimal value for problem B when the optimal
value v of problem A can be written as tby — ap.



The General Problem

|dea of the theorem (4)

» Idea: use the relation between problem A and problem B as a decision procedure
for solving problem B, using algorithm A.

If v = tbyg — ap: algorithm B can be solved by employing algorithm A.

If v < tby — ag: test a smaller t value.

If v > tby — ap: test a bigger t value.

Key question: How many values of t have to be tested before v = tby — ag.

Gradually find an interval such that v € [e, f]

vVvYvyVvyVvyy

Notice the similarity with the preliminary example.
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Applying the General Problem to MRC

Analogies
» Problem A: Minimize cix3 + -+ + ¢px, subject to x = (x1,...,x,) € D
— Shortest path between two nodes
» Problem B: Minimize Z—g + Z—ixl 4t Z—:x,, subject to x = (x1,...,%,) € D

— Minimum ratio cycle.
> Megiddo's theorem indicates that problem B can be solved using problem A.



Applying the General Problem to MRC

The Floyd Warshall Algorithm

> Below: get shortest distance from node / to node j.
» Uses dynamic programming to construct shortest path.
> Find shortest path between all nodes in O(n?).

» Can detect negative cycles.

1. let m < Distance-encoded adjacency matrix
2. let n ¢ length(m);
3. for k <+ 0 ... n:
for i < 0 ... n:
for j < 0 ... n:
if(mlil (k] + m[k][j] < m[i1[3]) {
m[i] [j] < m[il[k] + m[k][3];
}



Applying the General Problem to MRC

Notation
> ufjm): length of a shortest simple path from i to j, only using nodes from the set
{1...m—1}U{i,j} and using a distance function c;(t) = aj — tbj;
» This is a beefed-up A algorithm that will be run to demarcate the solution bound
for problem B.
» Needs to be able to cope with negative cycles.



Applying the General Problem to MRC

Algorithm Outline (1)

1. let n+«+ |V(G)]

2. let [e,f] <= [—o00,00], let i j m<+ 0 with 0</i<j<n
) (m)yepy —  (m) (m) .

3. let t’ + solve(u,-j (£) = o™ (£) + (t))t,

4. if (unique_solution(t’)) {
check_cycles(t’);

} else {
update_parameters() ;

}
ue (m) (m) ™))
(¢) = min (4™ (), uf(8) + U5 (1) );
6. update_parameters(),
7. MRC < find k such that ul’(f) <0



Applying the General Problem to MRC

Algorithm Outline (2)

8. check_cycles(t’):
let G < graph with distances cw(t') = aw — t'bu

i:f(zero_cycle(g) AND !negative_cycle(g)) {

let MRC < zero_cycle(§);
return MRC;

} else if (negative_cycle(g)) {
[e, f] < [e, t'];

} else if (all_cycles_positive(g)) {
[e, f] < [t', f];



Applying the General Problem to MRC

Algorithm Outline (3)

9. update_parameters(t’):

if G<nm o
J—it L
go_to(1);

} else if (j=n AND i < m{
i<« i+1;
go_to(1);

} else if (i=j=n AND m < nm){
i« 1;
Jj< 1
m<+ m+1;
go_to(1);

} else if(i=j=n AND m = n){
go_to(5);

}



Applying the General Problem to MRC

Decision Procedure Visualisation
» The result t’ of so/ve(ufjm)(t) = uf,':)(t) + ufé?(t))
t

determines how the solution interval [e, f] is updated.

&

<
XS




Conclusions

» The basic principle of parametric search is not too difficult to grasp, but applying
it in practice requires creativity and ingenuity.

» Visuals help in algorithm intuition and proof argumentation.

» Papers should reference / illustrate non-obvious steps in proofs better. e.g.
Ratio-minimization trick.
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