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Project Goals

I Make parametric search more comprehensible with a bottom-up (examples)
approach rather than a top-down (formal) approach.

I Get intuition for how and when to use parametric search.

I Provide visualisations of parameterization.

I Do something with graphs.
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Parametric Search

Informal Explanation

Use decision problem algorithm to solve optimization problem.

I Decision problem: Check if a condition holds or not.
e.g. For input value λ, is λ < λ∗, λ = λ∗ or λ > λ∗?

I Optimization problem: Find optimal solution for problem.
e.g. Minimize f (λ) when λ has a set of constraints.
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Components

Definitions and Notation

I Let fi (λ) = ai + biλ with bi > 0.

I Let
{
f1(λ), . . . , fn(λ)

}
be a set of pairwise distinct functions.

I Let F (λ) be the median of set
{
f1(λ), . . . , fn(λ)

}
for all λ ∈ R.

I Let λij denote the intersection two distinct functions fi and fj in the set{
f1(λ), . . . , fn(λ)

}
, such that ai + biλij = aj + bjλij with i 6= j .



Components

Notes on F (λ)

I Monotone increasing segments, because bi > 0 in
each fi (λ) = ai + biλ of set

{
f1(λ), . . . , fn(λ)

}
.

I O(n2) breakpoints, because the maximum of

intersections for n straight lines is n2−n
2 intersections

I Evaluable in linear-time when all fi (λ)’s have been
computed.
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Solving F (λ) = 0

A Non-Parametric Algorithm Outline

1. let intersections ← All λij ∈
{
f1, . . . , fn

}
;

2. sort(intersections);

3. let interval ← binary_search(

function pivot_comparison(λij) {

return λij < 0;
}

);

4. linear_root(interval);

Algorithm Asymptote is Quadratic

I Find intersections: O(n2)

I Sorting: O(n log (n))

I Binary Search: O(log (n))



Solving F (λ) = 0

Employing Parametric Search

I Idea: use decision procedure on critical points λij , i.e. λij > 0, λij = 0 or λij < 0
to find the smallest open interval (λmin, λmax) where F (λ) = 0.

I λ∗ denotes the unkown solution to F (λ∗) = 0.

A Parametric Algorithm Outline

1. let λmin ← −∞ and λmax ←∞;

2. let intersections ← All λij ∈
{
f1, . . . , fn

}
;

3. for λij in intersections:

if(λij ∈ (λmin, λmax) AND F (λij) < 0)) {

λmin ← λij;

} else if(λij ∈ (λmin, λmax)) {

λmax ← λij;

}

4. linear_root((λmin, λmax));



Solving F (λ) = 0

A Parametric Algorithm Outline

1. let λmin ← −∞ and λmax ←∞;

2. let intersections ← All λij ∈
{
f1, . . . , fn

}
;

3. for λij in intersections:

if(λij ∈ (λmin, λmax) AND F (λij) < 0)) {

λmin = λij;

} else if(λij ∈ (λmin, λmax)) {

λmax = λij;

}

4. linear_root((λmin, λmax));

Algorithm Assymptote is Quadratic

I Finding intersections: O(n2)

I Only O(n) of O(n2) intersections require an O(n) evaluation of F : O(n2)



Solving F (λ) = 0

From Parametric to Parallelism

I λmin and λmax are shared variables of the concurrent processes.

I Each intersection λij can be evaluated by F independently, on a different thread.

I Yield slightly better theoretical bounds: O(nlog(n)2) and O(nlog(n)2log(log(n))).
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The problem

Informal Explanation

I Coined by Dantzig et al. in the context of a ship
routing problem posed by the American Office of
Naval Research.

I Concerns a ship owner that wants to maximize his
mean daily profit over time while making a round
trip through multiple ports.

I Can be transformed to a minimization problem by
looking at the minimal cost.

I The solution to MRC gives exactly the path that the
skipper should take to maximize his profit.



The MRC problem

More Formally

I A directed graph G = (V ,E ), with V a set of vertices and E a set of edges.

I No self-loops in G
I Each vertex i has an associated cost cij and travel time tij to reach a vertex j .

Representation

I Adjacency matrix A ∈ {0, 1}|V |×|V | → Directed graph G
I A cost matrix C ∈ R|V |×|V | → All travel costs cij
I A time matrix T ∈ R|V |×|V | → All travel times tij



The MRC problem

Representation Example

I Interactive graph visualisations made using the
Cytoscape Library.

I Should be formulated as an optimization
problem (minimization).

A =


0 1 0 0 0
1 0 1 0 1
0 0 0 1 0
1 0 1 0 0
1 1 0 0 0

 C =


0 8 0 0 0
3 0 9 0 4
0 0 0 7 0
2 0 1 0 0
6 11 0 0 0

 T =


0 3 0 0 0
1 0 4 0 1
0 0 0 2 0
3 0 1 0 0
2 9 0 0 0


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The General Problem

Megiddo’s Theorem

Problem A. Minimize c1x1 + · · ·+ cnxn subject to x = (x1, . . . , xn) ∈ D

Problem B. Minimize
a0 + a1x1 + · · ·+ anxn
b0 + b1x1 + · · ·+ bnxn

subject to x = (x1, . . . , xn) ∈ D

With D a set of conditions or constraints to which x = (x1, . . . , xn)

must adhere in order to be a valid solution.

Theorem. If problem A is solvable within O
(
p(n)

)
comparisons and O

(
q(n)

)
additions,

then B is solvable in time O

(
p(n)

(
q(n) + p(n)

))
.



The General Problem

Idea of the theorem (1)

I Given a problem of type B :

min
(
a0
b0

+ a1
b1
x1 + · · ·+ an

bn
xn
)

with x = (x1, . . . , xn) ∈ D

I Pick a fixed number t ∈ R
I Solve problem A with parameters of problem B and t :

min
(
c1x1 + · · ·+ cnxn | ci (t) = ai − tbi

)
with x = (x1, . . . , xn) ∈ D



The General Problem

Idea of the theorem (2)

I Suppose that v is the optimal value for problem A :

v = min
(

(a1 − tb1)x1 + · · ·+ (an − tbn)xn
)

with x = (x1, . . . , xn) ∈ D.

I If v can be written as tb0 − a0 then:

tb0 − a0 = min
(

(a1 − tb1)x1 + · · ·+ (an − tbn)xn
)
⇐⇒

t = min
(
a0
b0

+ (a1 − tb1)x1 + · · ·+ (an − tbn)xn
)

I How does this compare to problem B?

min
(
a0
b0

+ a1
b1
x1 + · · ·+ an

bn
xn
)

with x = (x1, . . . , xn) ∈ D



The General Problem

Idea of the theorem (3)

I Notice that ∀i ∈ {1 . . . n} : ai
bi

is the root of ci (t) = ai − tbi such that ci (
ai
bi

) = 0.

I Megiddo’s ratio-minimization trick: replace functions in problem with their roots.

tb0 − a0 = min
(
c1(t)x1 + · · ·+ cn(t)xn

)
⇐⇒

t = a0
b0

+ min
(

(a1 − tb1)x1 + · · ·+ (an − tbn)xn
)
⇐⇒

t = min
(
a0
b0

+ a1
b1
x1 + · · ·+ an

bn
xn
)

I We found a relation: t is the optimal value for problem B when the optimal
value v of problem A can be written as tb0 − a0.



The General Problem

Idea of the theorem (4)

I Idea: use the relation between problem A and problem B as a decision procedure
for solving problem B, using algorithm A.

I If v = tb0 − a0: algorithm B can be solved by employing algorithm A.

I If v < tb0 − a0: test a smaller t value.

I If v > tb0 − a0: test a bigger t value.

I Key question: How many values of t have to be tested before v = tb0 − a0.

I Gradually find an interval such that v ∈ [e, f ]

I Notice the similarity with the preliminary example.
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Applying the General Problem to MRC

Analogies

I Problem A: Minimize c1x1 + · · ·+ cnxn subject to x = (x1, . . . , xn) ∈ D
→ Shortest path between two nodes

I Problem B: Minimize a0
b0

+ a1
b1
x1 + · · ·+ an

bn
xn subject to x = (x1, . . . , xn) ∈ D

→ Minimum ratio cycle.

I Megiddo’s theorem indicates that problem B can be solved using problem A.



Applying the General Problem to MRC

The Floyd Warshall Algorithm

I Below: get shortest distance from node i to node j .

I Uses dynamic programming to construct shortest path.

I Find shortest path between all nodes in O(n3).

I Can detect negative cycles.

1. let m ← Distance-encoded adjacency matrix

2. let n ← length(m);

3. for k ← 0 . . . n:
for i ← 0 . . . n:

for j ← 0 . . . n:
if(m[i][k] + m[k][j] < m[i][j]) {

m[i][j] ← m[i][k] + m[k][j];

}



Applying the General Problem to MRC

Notation

I u
(m)
ij : length of a shortest simple path from i to j , only using nodes from the set
{1 . . .m − 1} ∪ {i , j} and using a distance function cij(t) = aij − tbij

I This is a beefed-up A algorithm that will be run to demarcate the solution bound
for problem B.

I Needs to be able to cope with negative cycles.



Applying the General Problem to MRC

Algorithm Outline (1)

1. let n← |V (G)|
2. let [e, f ]← [−∞,∞], let i ← j ← m← 0 with 0 ≤ i ≤ j ≤ n

3. let t’ ← solve
(
u
(m)
ij (t) = u

(m)
im (t) + u

(m)
mj (t)

)
t
;

4. if (unique_solution(t’)) {

check_cycles(t’);

} else {

update_parameters();

}

5. u
(m+1)
ij (t)← min

(
u
(m)
ij (t), u

(m)
im (t) + u

(m)
mj (t)

)
;

6. update_parameters();

7. MRC ← find k such that un+1
kk (f ) < 0.



Applying the General Problem to MRC

Algorithm Outline (2)

8. check_cycles(t’):

let G ← graph with distances ckl(t
′) = akl − t′bkl

if
(
zero_cycle(G) AND !negative_cycle(G)

)
{

let MRC ← zero_cycle(G);
return MRC;

} else if
(
negative_cycle(G)

)
{

[e, f ]← [e, t′];

} else if
(
all_cycles_positive(G)

)
{

[e, f ]← [t′, f ];
}



Applying the General Problem to MRC

Algorithm Outline (3)

9. update_parameters(t’):

if (j < n) {

j ← j + 1;
go_to(1);

} else if (j = n AND i < n){
i ← i + 1;
go_to(1);

} else if (i = j = n AND m < n){
i ← 1;
j ← 1;
m← m + 1;
go_to(1);

} else if(i = j = n AND m = n){
go_to(5);

}



Applying the General Problem to MRC

Decision Procedure Visualisation

I The result t ′ of solve
(
u
(m)
ij (t) = u

(m)
im (t) + u

(m)
mj (t)

)
t

determines how the solution interval [e, f ] is updated.

i = j = m = 0 i = 0, j = 2, m = 3 i = 1, j = 0, m = 0



Conclusions

I The basic principle of parametric search is not too difficult to grasp, but applying
it in practice requires creativity and ingenuity.

I Visuals help in algorithm intuition and proof argumentation.

I Papers should reference / illustrate non-obvious steps in proofs better. e.g .
Ratio-minimization trick.
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